

MATHS CALCULATION POLICY

HAMBLETON CE PRIMARY SCHOOL

This policy has been adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

Hambleton CE VC Primary School

Objective \& Strategy Year 1 Addition	Concrete	Pictorial	Abstract
3 Balls 2 Balls Combining two parts to make a whole: part- whole model	\square \square Use part part whole 10 model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ $10=6+4$ Use the partpart whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Hambleton CE VC Primary School

Regrouping to make
In.
later.
Represent \& use number bonds
and related subtraction facts
within 20

 Strategy Year 2 Addition	Concrete	Pictorial	Abstract
Adding multiples of ten	Model using dienes and bead strings		

Hambleton CE VC Primary School

Use known number facts Part part whole	Children explore ways of making numbers within 20		$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$								
Using known facts	$\begin{aligned} & \square^{\square}+\square_{\square}=\square_{\square} \square_{\square} \square^{\square} \\ & \square \end{aligned}$	$\begin{aligned} & \because+\because=\therefore \\ &\\|\\|+\\|\\|=\\| \\|\\| \\| \\ & \square \square+\square \square=\text { ロロ } \\ & \square \square \square \square \square \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$								
Bar model	$3+4=7$	$7+3=10$	23 25 $?$$23+25=48$								

 Strategy Year 2 Addition	Concrete	Pictorial	Abst	
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern.	Use part part whole and number line to model. $17+5=22$	$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$	5

Hambleton CE VC Primary School

Add three 1-digit
numbers
Combine to make 10 first if possible, or
bridge 1o then add third digit

 Strategy Year 3 Addition	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	using Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +131 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.

Hambleton CE VC Primary School

 Strategy Year 4-6 Addition	Concrete Children continue to use dienes or pv	Pictorial	Abstract
Y4-add numbers with up to 4 digits	counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	 Draw representations using pv grid.	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.			$\begin{array}{rllll} \hline 72.8 \\ & & & & \\ +54.6 \\ \hline 127.4 \\ \hline 11 & & & & \\ \hline & € & 2 & 3 & \cdot \\ & + & 5 & 7 & \cdot \\ \hline & € 3 & \cdot & 1 & 4 \\ \hline & & 1 & 1 & \\ \hline \end{array}$

Hambleton CE VC Primary School

 Strategy Year 1 subtraction	Concrete	Pictorial	Abstract
Taking away ones.	counters, cubes etc zan be taken away. to show how objects	$15-3=12$ Cross out drawn objects to show what has been taken away.	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

Hambleton CE VC Primary School

Hambleton CE VC Primary School

Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=$ 21 Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $\square \square$ $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

 Strategy Year 3 subtraction	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns Then move to formal method.

 Strategy Year 4-6 subtraction	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r}{ }^{2} X^{10} X^{1} 0{ }^{\circ} \not 8^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928\end{array}$ Use zeros for $\begin{array}{r} 7^{10} x^{\prime} 6^{8} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \end{array}$ placeholders.

Hambleton CE VC Primary School

| Year 6-Subtract
 with increasingly
 large and more
 complex numbers
 and decimal values. |
| :--- | :--- | :--- | :--- |

 Strategy Year 1 multiplication	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8 \square \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting. 5 \square	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Hambleton CE VC Primary School

Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

Hambleton CE VC Primary School

 Strategy Year 1 multiplication	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

 Strategy Year 2 multiplication	Concrete				Abstract
Doubling	Model doubling using dienes and PV counters. $40=16=56$	Draw pictures and representations to show how to double numbers			Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.			Count in multiples of a number aloud. Write sequences with multiples of numbers. $0,2,4,6,8,10$ $0,3,6,9,12,15$ $0,5,10,15,20,25,30$ $4 \times 3=12$

Hambleton CE VC Primary School

 Strategy Year 2 multiplication	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. Pober $\rightarrow+\rightarrow$ $\square-5+$	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$Use an array to write multiplication sentences and reinforce repeated addition.$5+5+5=15$$3+3+3+3+3=15$$5 \times 3=15$$3 \times 5=15$

Hambleton CE VC Primary School

Using the Inverse			$2 \times 4=8$
This should be	(1) 010	8	$4 \times 2=8$
taught alongside		$14 \quad 2$	$8 \div 2=4$
division, so pupils		$\square \times \square=\square$	$8 \div 4=2$
learn how they			$8=2 \times 4$
work alongside		$\square \square=$	$8=4 \times 2$
each other.		$\square \div \square=$	$2=8 \div 4$
		$\square \div$	$4=8 \div 2$
			Show all 8 related fact family sentences.

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each colt ies making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	

Hambleton CE VC Primary School

Hambleton CE VC Primary School

 Strategy Year 6 multiplication		Poncrete	Pictorial
Multiplying decimals up to 2 decimal places by a single digit.		Abstract Remind children that the single digit belongs in the units/ones column. Line up the decimal points in the question and the answer.	

Hambleton CE VC Primary School

 Strategy Year 2 Division	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$

Hambleton CE VC Primary School

 Strategy Year 3 Division	Concrete		Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue division ?	ue to use bar modelling problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$

Hambleton CE VC Primary School

 Strategy Year 4-6 Division	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division		Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.	Begin with divisions that divide equally with no remainder.
Short Division			Move onto divisions with a remainder.
	Use place value counters to divide using the bus stop method alongside	Encourage them to move towards counting in multiples to divide more efficiently.	Finally move into decimal places to divide the total accurately.
			$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$

Long Division Year 6

> | hto |
| :---: |
| 041 R 1 |
| $4 \longdiv { 1 6 5 }$ |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th h to
$8 \longdiv { 0 4 0 0 R 7 }$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7

